extract_ti_from_se.Rd
Extract tumor immune quantifications from a SummarizedExperiment object,
previously processed with run_quantiseqr()
extract_ti_from_se(se)
A data.frame, formatted as required by downstream functions
data(dataset_racle)
dim(dataset_racle$expr_mat)
#> [1] 32467 4
# using a SummarizedExperiment object
library("SummarizedExperiment")
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘matrixStats’
#> The following objects are masked from ‘package:Biobase’:
#>
#> anyMissing, rowMedians
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> The following object is masked from ‘package:Biobase’:
#>
#> rowMedians
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: S4Vectors
#>
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#>
#> findMatches
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
se_racle <- SummarizedExperiment(
assays = List(
abundance = dataset_racle$expr_mat
),
colData = DataFrame(
SampleName = colnames(dataset_racle$expr_mat)
)
)
res_run_SE <- quantiseqr::run_quantiseq(
expression_data = se_racle,
signature_matrix = "TIL10",
is_arraydata = FALSE,
is_tumordata = TRUE,
scale_mRNA = TRUE
)
#>
#> Running quanTIseq deconvolution module
#> Gene expression normalization and re-annotation (arrays: FALSE)
#> Removing 17 noisy genes
#> Removing 15 genes with high expression in tumors
#> Signature genes found in data set: 135/138 (97.83%)
#> Mixture deconvolution (method: lsei)
#> Deconvolution successful!
extract_ti_from_se(res_run_SE)
#> Found quantifications for the TIL10 signature...
#> Sample B.cells Macrophages.M1 Macrophages.M2 Monocytes Neutrophils
#> LAU125 LAU125 0.02320356 0.0110013588 0.000000000 0.1774731 0.0000000
#> LAU355 LAU355 0.43141254 0.0005513951 0.000000000 0.0000000 0.0000000
#> LAU1255 LAU1255 0.02499868 0.0278718306 0.002192758 0.0000000 0.1864949
#> LAU1314 LAU1314 0.49243066 0.0020238340 0.013047188 0.0000000 0.0000000
#> NK.cells T.cells.CD4 T.cells.CD8 Tregs Dendritic.cells
#> LAU125 0.04899147 0.01012092 0.00000000 0.02337843 0
#> LAU355 0.00000000 0.44238123 0.02927432 0.09638052 0
#> LAU1255 0.00000000 0.00000000 0.09247654 0.05988438 0
#> LAU1314 0.00000000 0.37709982 0.05259234 0.06280617 0
#> Other
#> LAU125 7.058312e-01
#> LAU355 1.163725e-16
#> LAU1255 6.060809e-01
#> LAU1314 1.145087e-16