Plots a summary of enrichment results for one set
gs_summary_overview(
res_enrich,
gtl = NULL,
n_gs = 20,
p_value_column = "gs_pvalue",
color_by = "z_score",
return_barchart = FALSE
)
A data.frame
object, storing the result of the functional
enrichment analysis. See more in the main function, GeneTonic()
, to check the
formatting requirements (a minimal set of columns should be present).
A GeneTonic
-list object, containing in its slots the arguments
specified above: dds
, res_de
, res_enrich
, and annotation_obj
- the names
of the list must be specified following the content they are expecting
Integer value, corresponding to the maximal number of gene sets to be displayed
Character string, specifying the column of res_enrich
where the p-value to be represented is specified. Defaults to gs_pvalue
(it could have other values, in case more than one p-value - or an adjusted
p-value - have been specified).
Character, specifying the column of res_enrich
to be used
for coloring the plotted gene sets. Defaults sensibly to z_score
.
Logical, whether to return a barchart (instead of the default dot-segment plot); defaults to FALSE.
A ggplot
object
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#> using counts and average transcript lengths from tximeta
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
#> using 'avgTxLength' from assays(dds), correcting for library size
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
#> 'select()' returned 1:many mapping between keys and columns
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
#> Found 500 gene sets in `topGOtableResult` object.
#> Converting for usage in GeneTonic...
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
gs_summary_overview(res_enrich)
# if desired, it can also be shown as a barplot
gs_summary_overview(res_enrich, n_gs = 30, return_barchart = TRUE)