GeneTonic, main function for the Shiny app
GeneTonic(
dds = NULL,
res_de = NULL,
res_enrich = NULL,
annotation_obj = NULL,
gtl = NULL,
project_id = "",
size_gtl = 50
)
A DESeqDataSet
object, normally obtained after running your data
through the DESeq2
framework.
A DESeqResults
object. As for the dds
parameter, this is
also commonly used in the DESeq2
framework.
A data.frame
object, storing the result of the functional
enrichment analysis. Required columns for enjoying the full functionality of
GeneTonic()
include:
a gene set identifier (e.g. GeneOntology id, gs_id
) and its term description
(gs_description
)
a numeric value for the significance of the enrichment (gs_pvalue
)
a column named gs_genes
containing a comma separated vector of the gene names
associated to the term, one for each term
the number of genes in the geneset of interest detected as differentially
expressed (gs_de_count
), or in the background set of genes (gs_bg_count
)
See shake_topGOtableResult()
or shake_enrichResult()
for examples of such
formatting helpers
A data.frame
object, containing two columns, gene_id
with a set of unambiguous identifiers (e.g. ENSEMBL ids) and gene_name
,
containing e.g. HGNC-based gene symbols. This object can be constructed via
the org.eg.XX.db
packages, e.g. with convenience functions such as
mosdef::get_annotation_orgdb()
.
A GeneTonic
-list object, containing in its slots the arguments
specified above: dds
, res_de
, res_enrich
, and annotation_obj
- the names
of the list must be specified following the content they are expecting
A character string, which can be considered as an identifier
for the set/session, and will be e.g. used in the title of the report created
via happy_hour()
Numeric value, specifying the maximal size in MB for the accepted GeneTonicList object - this applies when uploading the dataset at runtime
A Shiny app object is returned, for interactive data exploration
library("macrophage")
library("DESeq2")
#> Loading required package: S4Vectors
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> Loading required package: generics
#>
#> Attaching package: ‘generics’
#> The following objects are masked from ‘package:base’:
#>
#> as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
#> setequal, union
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
#> mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
#> rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
#> unsplit, which.max, which.min
#>
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#>
#> findMatches
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomicRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#>
#> rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#>
#> anyMissing, rowMedians
library("org.Hs.eg.db")
#> Loading required package: AnnotationDbi
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#> using counts and average transcript lengths from tximeta
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
#> using 'avgTxLength' from assays(dds), correcting for library size
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
#> 'select()' returned 1:many mapping between keys and columns
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
#> Found 500 gene sets in `topGOtableResult` object.
#> Converting for usage in GeneTonic...
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
# now everything is in place to launch the app
if (interactive()) {
GeneTonic(
dds = dds_macrophage,
res_de = res_de,
res_enrich = res_enrich,
annotation_obj = anno_df,
project_id = "myexample"
)
}
# alternatively...
gtl_macrophage <- GeneTonicList(
dds = dds_macrophage,
res_de = res_de,
res_enrich = res_enrich,
annotation_obj = anno_df
)
#> ---------------------------------
#> ----- GeneTonicList object ------
#> ---------------------------------
#>
#> ----- dds object -----
#> Providing an expression object (as DESeqDataset) of 58294 features over 24 samples
#>
#> ----- res_de object -----
#> Providing a DE result object (as DESeqResults), 17806 features tested, 928 found as DE
#> Upregulated: 599
#> Downregulated: 329
#>
#> ----- res_enrich object -----
#> Providing an enrichment result object, 500 reported
#>
#> ----- annotation_obj object -----
#> Providing an annotation object of 58294 features with information on 2 identifier types
# GeneTonic(gtl = gtl_macrophage)
# if running it "as a server", without input data specified:
if (interactive()) {
GeneTonic(size_gtl = 300) # for fairly large gtl objects
}