R/gs_alluvial.R
gs_alluvial.RdGenerate an interactive alluvial plot linking genesets to their associated genes
gs_alluvial(
res_enrich,
res_de,
annotation_obj,
gtl = NULL,
n_gs = 5,
gs_ids = NULL
)
gs_sankey(
res_enrich,
res_de,
annotation_obj,
gtl = NULL,
n_gs = 5,
gs_ids = NULL
)A data.frame object, storing the result of the functional
enrichment analysis. See more in the main function, GeneTonic(), to check the
formatting requirements (a minimal set of columns should be present).
A DESeqResults object.
A data.frame object with the feature annotation
information, with at least two columns, gene_id and gene_name.
A GeneTonic-list object, containing in its slots the arguments
specified above: dds, res_de, res_enrich, and annotation_obj - the names
of the list must be specified following the content they are expecting
Integer value, corresponding to the maximal number of gene sets to be displayed
Character vector, containing a subset of gs_id as they are
available in res_enrich. Lists the gene sets to be displayed.
A plotly object
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#> using counts and average transcript lengths from tximeta
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
#> using 'avgTxLength' from assays(dds), correcting for library size
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
#> 'select()' returned 1:many mapping between keys and columns
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
#> Found 500 gene sets in `topGOtableResult` object.
#> Converting for usage in GeneTonic...
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
gs_alluvial(
res_enrich = res_enrich,
res_de = res_de,
annotation_obj = anno_df,
n_gs = 4
)
# or using the alias...
gs_sankey(
res_enrich = res_enrich,
res_de = res_de,
annotation_obj = anno_df,
n_gs = 4
)