R/gs_alluvial.R
gs_alluvial.Rd
Generate an interactive alluvial plot linking genesets to their associated genes
gs_alluvial(
res_enrich,
res_de,
annotation_obj,
gtl = NULL,
n_gs = 5,
gs_ids = NULL
)
gs_sankey(
res_enrich,
res_de,
annotation_obj,
gtl = NULL,
n_gs = 5,
gs_ids = NULL
)
A data.frame
object, storing the result of the functional
enrichment analysis. See more in the main function, GeneTonic()
, to check the
formatting requirements (a minimal set of columns should be present).
A DESeqResults
object.
A data.frame
object with the feature annotation
information, with at least two columns, gene_id
and gene_name
.
A GeneTonic
-list object, containing in its slots the arguments
specified above: dds
, res_de
, res_enrich
, and annotation_obj
- the names
of the list must be specified following the content they are expecting
Integer value, corresponding to the maximal number of gene sets to be displayed
Character vector, containing a subset of gs_id
as they are
available in res_enrich
. Lists the gene sets to be displayed.
A plotly
object
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#> using counts and average transcript lengths from tximeta
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
#> using 'avgTxLength' from assays(dds), correcting for library size
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
#> 'select()' returned 1:many mapping between keys and columns
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
#> Found 500 gene sets in `topGOtableResult` object.
#> Converting for usage in GeneTonic...
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
gs_alluvial(
res_enrich = res_enrich,
res_de = res_de,
annotation_obj = anno_df,
n_gs = 4
)
# or using the alias...
gs_sankey(
res_enrich = res_enrich,
res_de = res_de,
annotation_obj = anno_df,
n_gs = 4
)