R/makeds.R
makeExampleDESeqDataSet_multifac.Rd
Constructs a simulated dataset of Negative Binomial data from different conditions.
The fold changes between the conditions can be adjusted with the betaSD_condition
and the betaSD_tissue
arguments.
makeExampleDESeqDataSet_multifac(
n = 1000,
m = 12,
betaSD_condition = 1,
betaSD_tissue = 3,
interceptMean = 4,
interceptSD = 2,
dispMeanRel = function(x) 4/x + 0.1,
sizeFactors = rep(1, m)
)
number of rows (genes)
number of columns (samples)
the standard deviation for condition betas, i.e. beta ~ N(0,betaSD)
the standard deviation for tissue betas, i.e. beta ~ N(0,betaSD)
the mean of the intercept betas (log2 scale)
the standard deviation of the intercept betas (log2 scale)
a function specifying the relationship of the dispersions on
2^trueIntercept
multiplicative factors for each sample
a DESeqDataSet()
with true dispersion,
intercept for two factors (condition and tissue) and beta values in the
metadata columns. Note that the true betas are provided on the log2 scale.
This function is designed and inspired following the proposal of
makeExampleDESeqDataSet()
from the DESeq2
package. Credits are given
to Mike Love for the nice initial implementation
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
dds
#> class: DESeqDataSet
#> dim: 1000 12
#> metadata(1): version
#> assays(1): counts
#> rownames(1000): gene1 gene2 ... gene999 gene1000
#> rowData names(4): trueIntercept trueBeta_condition trueBeta_tissue
#> trueDisp
#> colnames(12): sample1 sample2 ... sample11 sample12
#> colData names(2): condition tissue
dds2 <- makeExampleDESeqDataSet_multifac(betaSD_condition = 1, betaSD_tissue = 4)
dds2
#> class: DESeqDataSet
#> dim: 1000 12
#> metadata(1): version
#> assays(1): counts
#> rownames(1000): gene1 gene2 ... gene999 gene1000
#> rowData names(4): trueIntercept trueBeta_condition trueBeta_tissue
#> trueDisp
#> colnames(12): sample1 sample2 ... sample11 sample12
#> colData names(2): condition tissue