Plots a matrix of geneset Z scores, across all samples
gs_scoresheat(
mat,
n_gs = nrow(mat),
gs_ids = NULL,
clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean",
cluster_rows = TRUE,
cluster_cols = TRUE
)
A matrix, e.g. returned by the gs_scores()
function
Integer value, corresponding to the maximal number of gene sets to be displayed.
Character vector, containing a subset of gs_id
as they are
available in res_enrich
. Lists the gene sets to be displayed.
Character, a distance measure used in clustering rows
Character, a distance measure used in clustering columns
Logical, determining if rows should be clustered
Logical, determining if columns should be clustered
A ggplot
object
gs_scores()
computes the scores plotted by this function
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#> using counts and average transcript lengths from tximeta
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
#> using 'avgTxLength' from assays(dds), correcting for library size
vst_macrophage <- vst(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
#> 'select()' returned 1:many mapping between keys and columns
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
#> Found 500 gene sets in `topGOtableResult` object.
#> Converting for usage in GeneTonic...
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
scores_mat <- gs_scores(
vst_macrophage,
res_de,
res_enrich[1:30, ],
anno_df
)
gs_scoresheat(scores_mat,
n_gs = 30
)